Practical Hebrew search

Itamar Syn-Hershko
@synhershko
http://code972.com

/Me

e [tamar Syn-Hershko
e Hibernating Rhinos

e Data Access champs
e ORM Profilers
e RavenDB

e Lucene, CLucene
e HebMorph
e More @ http://code972.com

Dealing with data explosion

 Manual tagging is too much work

e Scanning texts takes too long

 [nverted index: faster, flexible, relevance
e Measuring TR engine: precision, recall

e There is no perfect search engine: language, users,
corpora dependent

Search 101

 The indexing process: given a corpus, produce an
inverted index

* Querying: based on a user question, build the best
query possible that is understood by the search
engine

e Performing the actual search: read the index (in a

method dictated by the query), and make relevance
calculations as fast as possible

Practical Hebrew Search

Term Positions
and <6>
big <2><3>
dark <6>
1 | The old night keeper keeps the keep in the town
did <4>
2 | Inthe big old house in the big old gown.
gown <2>
3 | The house in the town had the big old keep had <3>
4 | Where the old night keeper never did sleep. house <2><3>
5 | The night keeper keeps the keep in the night in <1><2><3> <5> <6>
6 | And keeps in the dark and sleeps in the light. keep <1><3> <5>
keeper <1><4><5>
W . keeps <1><5><6>
Q& 6 documents to index [=
. never <4>
The Index- night <1> <4> <5>
. . old <1><2><3><4>
Dictionary and ["
Example from: . -
Justin Zobel , Alistair Moffat, posting lists sleeps e
Inverted files for text search engines, the <1><2> <3> <4> <5> <6>
ACM Computing Surveys (CSUR) town <1><3>
V38 n.2, p.6-eS, 2006 where <4>

Search 101: the Inverted Index

User queries for “Keeper”

The old night keeper keeps the keep in the town

In the big old house in the big old gown.

The house in the town had the big old keep

Where the old night keeper never did sleep.

The night keeper keeps the keep in the night

|| |w|IDN |-

And keeps in the dark and sleeps in the light.

& 6 documents to index

The index:

N

Dictionary and
posting lists

Term Positions

and <6>

big <2><3>

dark <6>

did <4>

gown <2>

had <3>

house <2><3>

in <1><2><3><5><6>
keep <1><3><5>

keeps <1> <5><6>

light <6>

never <4>

night <1><4><5>

old <1><2><3><4>

sleep <4>

sleeps <6>

the <1><2><3> <4> <5> <6>
town <1><3>

where <4>

Search 101: Term Normalization

e Stop words (grey) e T votins
e Stemming T
 Porter stemmer 1=

e s-stemmer P s

light <6>
eeeee <4>
ight <1><4><5>
old <1><2><3><4>

ot
A A A
o = [
\ Y \%
w N

Meet Lucene EZM /2P

e Mature, state of the art IR library

e Provides API for adding indexing and search
capabilities to applications

e Written in Java, with ports also to .NET, C++
e Fast, efficient, constantly evolving

 Many extension points, Contribs

e Document has Fields, each Field holds Terms
e The analysis chain

Meet Lucene S uee e
Data sources
1 Application Ul
Gather and parse l

Make Lucene W

document

Using Lucene: Indexing

import
import
import
import
import

L

org.apache.lucene.analysis.SimplefAnalyzer;
org.apache.lucene.document.Document;
org.apache.lucene.document.Field;
org.apache.lucene.index.IndexWriter;
org.apache.lucene.store.FSDirectory;

IndexWriter indexWriter = new IndexWriter(
FSDirectory.open(path), // or RAMDirectory, or other Dir
new SimpleAnalyzer(), // Analyzer of choice
true, // create if does not exist
IndexWriter.MaxFieldlLength.LIMITED);

f/ Add a new index document

Document doc = new Document();

doc.add(new Field("contents", new FileReader(textFile)))

doc.add(new Field("filename", textFile.getCanonicalPath(
Field.Store.YES, Field.Index.ANALYZED));

3
)5
indexWriter.addDocument{(doc); // commit the doc to the index

indexWriter.optimize();
indexWriter.close();

Using Lucene: Search

import org.apache.lucene.analysis.Simplefnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;

import org.apache.lucene.search.ScoreDoc;

import org.apache.lucene.search.TopDocs;

import org.apache.lucene.store.Directory;

import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.util.Version;

...

Directory directory = FSDirectory.open(indexDir);
IndexSearcher searcher = new IndexSearcher(directory);

// Analyzer used for parsing the gquery has to match the one used for indexing!
QueryParser parser = new QueryParser(Version.LUCENE_ 38, "contents", new Simplefnalyzer());
Query query = parser.parse("+my +file");

TopDocs topDocs = searcher.search(query, maxHits);

ScoreDoc[] hits = topDocs.scoreDocs;
for (int 1 = @8; 1 < hits.length; i++) {
int docId = hits[i].doc;
Document d = searcher.doc(docId);
System.out.println(d.get("filename")); // only works on STORED fields

¥
System.out.println(hits.length + " results found");

Using Lucene: Analyzers

The quick brown fox jumped over the lazy dogs, bob@hotmail.com 123432.

StandardAnalyzer:
[quick] [brown] [fox] [jumped] [over] [lazy] [dog] [bob@hotmail.com] [123432]

StopAnalyzer:
[quick] [brown] [fox] [jumped] [over] [lazy] [dogs] [bob] [hotmail] [com]

SimpleAnalyzer:
[the] [quick] [brown] [fox] [jumped] [over] [the] [lazy] [dogs] [bob] [hotmail] [com]

WhitespaceAnalyzer:
[The] [quick] [brown] [fox] [jumped] [over] [the] [lazy] [dogs,] [bob@hotmail.com] [123432.]

KeywordAnalyzer:
[The quick brown fox jumped over the lazy dogs, bob@hotmail.com 123432.]

Using Lucene: There's a lot more

e Highlighting and extraction of best fragments
e MoreLikeThis

e “Did youmean ... ?"

e Faceted search

e Similarity (BM25)

e Real-time search

e Cloud Directory implementations

e And much more...

Challenges with Hebrew IR

Particles and inverted index

Term

207 IR DAIT NYITY

AITYY71 KA D'WIR DWW IR

N'¥NNY7 [2A¥YN N¥p N7 NI'Y7Y DY D'0SWUN nYIY

I'MON XIQ DY |"MYn YAXRN 11T [I19X2 'Nin ,|2'7|"| AT

|3.'72 05vunn N2 nNN'p NX viax? nmn 'nyp'a

NINN NNAIN Y7¢ NINon W'Nn I]'72'|7

NN | |W N

Challenges with Hebrew IR

 Tokens ambiguity with niqqud-less spelling,
which is the most common

English: Look, Luke; Wine, Whine; Stack, Stuck.
Hebrew: nw, 1y, Ny, 1w, Ny

Nigqud-less spelling: nw, nw, ny, Ny, ny. ..

Challenges with Hebrew IR

Hebrew word uses particles for context

e Without removing suffixes, relevant words might be skipped
(for example: N22N)

e Without removing prefixes, relevant words will not be looked
up at all

 Ambiguity makes affixes removal impossible in many cases

..MM, ,N"ay N NN <- N
QDN NX NDOYDO NN <- N2AdN

X291 ND210N NINN NADN
?<-"m5)
? <—1Nav

Challenges with Hebrew IR

e No spelling rules:
— X'm /on amd (“Nn'RY)
— Loanwords and names

PNNRAT X NNATT

UIMME/NX IX PNMIEYNX
PO X NTAY

027N 1IX NP0

1IND DN IX 711D 1IN DMD

Challenges with Hebrew IR

e Stop words ambiguity

LK T N
e Stop words as collations

LT DY O DY X L, 0OYo N T DV
e (Collations where a meaning of a single word is changed

DINNN 'Y

Challenges with Hebrew IR

e Tokenization:

— Hebrew acronyms use double-quotes character, which is
usually considered as punctuation character by most
tokenizers

— Same with Geresh, which is used for abbrevations
— Geresh is also used for "2 Y"¥N
— ... and ambiguity again: '¥1'X

Ways of resolution

e Deciding on an “indexing unit” is the cornerstone of
any good performing search engine

 For Hebrew we have:
— The original term (and possibly using wildcards?)
— Hebrew triliteral root
— Lemma (N27T < 1'MN>T)
— Psuedo-lemma, Stem
— Other non word-based approaches (n-grams)?

e Considerations

Hebrew NLP methods

 |In order to extract a correct lemma, the word has to
be evaluated within its original context

e Dictionary based or algorithmic

e Both require a lot of work, and are still prone to
errors

e Even with the most advanced tools, ambiguity will
remain:

"[...] o' D'o1VUN W AXINN"
"lIna nYwnnn uxY"
"121%7 nO7Y"

Food for thought

e Researches have shown 4-grams and light stemmers
(“light-10") to work better than morphologic
lemmatizers for Arabic IR

e Apparently, good relevance can be achieved without
‘knowing’ the language
e Search: Computers vs Humans

 Lemmatization and disambiguation processes do
make mistakes

e Contextual processing can fail for short queries,
producing incorrect searches

e Currently there is no way of knowing if common Web
search engines really produce quality results for your
Hebrew searches!

HebMorph

... is a free, open-source effort for making Hebrew properly searchable by
various IR software libraries, while maintaining decent recall, precision
and relevance in retrievals.

e 2 goals
e Testing and evaluation are done on top of Lucene
e Available in .NET and Java, C++ underway

e MorphAnalyzer, Hebrew.SimpleAnalyzer
(+ duality)

 OpenRelevance

What do we have now?

e MorphAnalyzer
— hspell is loaded into a Radix
— Hebrew Tokenizer
— Token is looked up in the Radix
— If not found, tolerating lookup is tried
— Token filters (score, stop words)

 Hebrew.SimpleAnalyzer
— Hebrew Tokenizer
— Optional duality with MorphAnalyzer (suffix)

 QueryParser

-
Stream, for i = MorphData
4 Tokenizer
tokenization Class J Class J
L] .,
n i q
Stream, for tokenization (StreamLemmatizer DictRadix<T>
& lemmatization Class Generic Class
Lemmatizer
| * 5f Count
“f RootNode

e -
Word, for lemmatization g; b J - .
L8

:p AddMNode (+1 overload)
4y DictRadix
iy GetEnumerator

:p Lookup (+1 overload)
¢ LookupTolerant

M
A —— — i —— — — — — — Y
. { LookupTolerators i
i Static Class :
|
]
: = Fields]
| @ TolerateEmKryiaal !
| % TolerateEmKryiavav I
C 1 % TolerateEmKnyiaYud :
onsumer | =% TolerateMonDoubledConsonantVav -
‘---------------------—}
_ \J
‘ LemmaFilterBase i i
' Token
Abstract Cla 1
_ B 5 Class
ln
Fa = _
BasicLemmaFilter
Class o
+ LemmaFilterBase HebrewToken
\ Class
- Token
Y —— ,
| StopWords [}
: Static Class |
L .;l

" Loader J

e— Class

i

.

H5pell data and constants

lucene.analysis.hebrew.MorphAnalyzer

LA

Using HebMorph

 Keep MorphAnalyzer around, don't recreate

e Take advantage of boosts, LemmaFilters,
BinaryCoordSimilarity

// Create a MorphAnalyzer instance
var morphAnalyzer = new Morphfnalyzer(HSpellDataFilesPath);

// Plug in a standard HebMorph lemma filter, to remove low scored results (tolerated lemmas)
var lemmaFilter = new HebMorph.lLemmaFilters.ChainedLemmaFilter();
lemmaFilter.Filters.AddLast(new HebMorph.LemmaFilters.BasiclLemmaFilter());
morphAnalyzer.lemmaFilter = lemmaFilter;

// To enable duality search with Hebrew.SimpleAnalyzer, set only before indexing
// More about this here: http://www.code972.com/blog/28108/87 /more-flexible-hebrew-indexing-hebmorph/
morphAnalyzer.alwaysSaveMarkedOriginal = true; // to allow for non-morphologic searches too

// Parse gueries with a Hebrew compatible QueryParser
var gp = new HebrewQueryParser(lLucene.Net.Util.Version.LUCENE 29, "field", morphfAnalyzer);
indexSearcher.Search(gp.Parse("query"), tsdc);

On-Line Demo

Hebrew Wikipedia searchable by HebMorph

Try it live yourself:
http://hebmorph.code972.com

Full source available from
http://github.com/synhershko/HebMorph.CorpusSearcher

(AGPLv3)

HebMorph: The road ahead

e Hebrew judgments for OpenRelevance with Orev

e Comparing various possible approaches to Hebrew
IR (n-grams, Viterbi, ...)

e Tokenizer improvements

e MorphAnalyzer:

— hspell improvements (coverage, lemma probabilities,
prefix probabilities)

— Better Toleration mechanism

— Smarter OOV handling

— Better stop words handling
e Other uses (NLP, OCR, you name it)

Orev — OpenRelevance Viewer

 Work in progress
* Relevance judgments
e Corpus, Topic, Judgment

e Muli-lingual, multi-corpus application for
corpus-topic judging

Questions ?

Our mailing list: https://lists.sourceforge.net/lists/listinfo/hebmorph-
thinktank

Code repository (AGPLvV3):
http://github.com/synhershko/HebMorph

Activity updates and more information:
http://hebmorph.code972.com/

